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1. introduction
The theory of variational inequalities is an important domain of applied

mathematics, introduced in the early sixties by Stampacchia and Hartman[10].
It developed rapidly because of its applications. A classical variational in-
equality problem is to find a vector u∗ ∈ K such that

⟨v − u∗, T (u∗)⟩ ≥ 0, v ∈ K,

where K ⊆ Rn is nonempty, closed and convex set and T is a mapping from
Rn into itself. Later, variational inequality expanded to Hilbert and Banach
spaces. So far, a large number of existing conditions have been established.
The books [11] and [3] provide a suitable introduction to variational inequal-
ity and its applications. For other generalizations of variational inequalities
see [14],[15].

The concept of 2-inner product space was introduced by Diminnie, Gahler
and A.White[5].

Definition 1.1. Let X be a real linear space with dimX ≥ 2. Suppose
that (., .|.) is a real-valued function defined on X3 satisfying the following
conditions:
(2I1) (x, x|z) ≥ 0 and (x, x|z) = 0 if and only if x and z are linearly
dependent,
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(2I2) (x, x|z) = (z, z|x),
(2I3) (y, x|z) = (x, y|z),
(2I4) (αx, y|z) = α(x, y|z) for any scalar α ∈ R,
(2I5) (x+ x′, y|z) = (x, y|z) + (x′, y|z).
Then (., .|.) is called a 2-inner product on X and (X, (., .|.)) is called a 2-inner
product space (or 2-pre-Hilbert space).

2-inner product spaces have been intensively studied by many authors
in the last three decades. A systematic presentation of the recent results
related to the theory of 2-inner product spaces as well as an extensive list
of the related references can be found in the book [4].

Another concept which is closely related to 2-inner product is 2-norm,
which is introduced by Gahler in 1965 [9].

Definition 1.2. Let X be a real linear space with dimX ≥ 2 and ∥ ., . ∥:
X2 → [0,∞) a function satisfying the following conditions for all α ∈ R and
all x, y, z ∈ X:
(2N1) ∥ x, y ∥= 0 ⇔ x and y linearly dependent,
(2N2) ∥ x, y ∥=∥ y, x ∥,
(2N3) ∥ αx, y ∥= |α| ∥ x, y ∥,
(2N4) ∥ x+ y, z ∥≤∥ x, z ∥ + ∥ y, z ∥,
Then ∥ ., . ∥ is called 2-norm on X and (X, ∥ ., . ∥) is called linear 2-normed
space.

The basic theory of 2-normed spaces can be found in [8]. Some basic
properties of 2-inner product and 2-norm can be immediately obtained are
as follows:

(1) (0, y|z) = 0, (x, 0|z) = 0.
(2) For x, y, z ∈ X we have the Couchy-Schwartz inequality

|(x, y|z)| ≤
√
(x, x|z)

√
(y, y|z).

(3) ∥ x, y ∥ is non-negative for all x, y ∈ X.
(4) ∥ x, y + αx ∥=∥ x, y ∥ for all x, y ∈ X and α ∈ R.

The next theorem provides a relation between 2-norms and 2-inner products.

Theorem 1.3. [4] On any 2-inner product space (X, (., .|.)), ∥a, b∥ =
√

(a, a|b)
defines a 2-norm for which

(1.1) (a, b|c) = 1

4
(∥a+ b, c∥2 − ∥a− b, c∥2)

and (the 2-dimensional analogue of the Parallelogram Law)
∥a+ b, c∥2 + ∥a− b, c∥2 = 2(∥a, c∥2 + ∥b, c∥2).

Conversely if Parallelogram Law established in linear 2-normed space
(X, ∥ ., . ∥) then (1.1) defines a 2-inner product on X.

Whenever a 2-inner product space (X, (., .|.)) is given, we consider it as a
linear 2-normed space (X, ∥., .∥) with the 2-norm defined in Theorem (1.3).
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For a fixed z ∈ X, the function Pz(x) =∥ x, z ∥ (x ∈ X), is a seminorm on
X. Since dimX > 1 for any y ̸= 0 there exists x ∈ X such that x and y are
linearly independent and hence Px(y) ̸= 0. So the class P = {Pz : z ∈ X}
forms a family of semi-norms which separates points in X and generates a
locally convex topology on X, which is called the natural topology induced
by the 2-norm ∥ ., . ∥.

Definition 1.4. Let (X, ∥., .∥) be a 2-normed space , and u ∈ X.
(1) A sequence {xn} ⊆ X is said to be u-convergent to x ∈ X and

denoted by xn
u−→ x, if limn−→∞ ∥xn − x, u∥ = 0.

(2) A subset K of X is said u-closed, if {xn} ⊆ K is u-convergent to
x ∈ X, then x ∈ K.

2. Variational inequalities on 2-inner product spaces
In this section, we give the natural generalization of variational inequality

on 2-inner product spaces and then we prove our main theorem.

Definition 2.1. Let K be an arbitrary nonempty subset of real 2-inner
product space X, 0 ̸= u ∈ X and T : K 7−→ X be a mapping. The set of
variational inequality corresponds to T , K, and u, denoted by V I(T,K, u),
is the set of all x0 ∈ K that apply to the following condition

(x− x0, T (x0)|u) ≥ 0 ∀x ∈ K.

Some immediate consequences of definition 2.1 are listed below:
(1) If there exists x0 such that T (x0) = αu for some α ∈ R then x0 is a

solution of V I(T,K, u).
(2) If u ∈ K and x0 ∈ K is a solution of V I(T,K, u), then (x0, T (x0)|u) ≤

0.

Before proving existence theorems we recall the following notions and
prove analog of a Mintys lemma [13].

Definition 2.2. Let K ⊆ X be a closed and convex set, T : K 7−→ X be a
mapping and u ∈ X

(i) T is said to be u-monotone if

(x− y, T (x)− T (y)|u) ≥ 0 (x, y ∈ K).

(ii)
(iii) T is said to be strictly u-monotone if x ̸= y implies that

(x− y, T (x)− T (y)|u) > 0.

(iv)
(v) T is said to be u-pseudo monotone if (x− y, T (y)|u) ≥ 0 implies

(x− y, T (x)|u) ≥ 0.
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Lemma 2.3. Let u ∈ X,K ⊆ X be a closed and convex set and T : K 7−→ X
be a continuous and u-pseudo monotone. Then an element x0 ∈ K is a
solution of V I(T,K, u) if and only if
(2.1) (x− x0, T (x)|u) ≥ 0 ∀x ∈ K.

Proof. Suppose that x0 ∈ K is a solution of V I(T,K, u). Then for any
x ∈ K, we have (x−x0, T (x0)|u) ≥ 0 and the u-pseudo monotonicity implies
that (x− x0, T (x)|u) ≥ 0.

Conversely, suppose x0 ∈ K holds in condition (2.1). In this case, if
x ∈ K, we define xt by

xt = (1− t)x0 + tx, t ∈ (0, 1).

Insert xt in (2.1), we have
(xt − x0, T (xt)|u) ≥ 0,

which implies that
(t(xt − x0), T (xt)|u) ≥ 0

and finally
(x− x0, T (xt)|u) ≥ 0.

By taking the limit in the above inequality and by using the continuity of
T , we get

(x− x0, T (x0)|u) ≥ 0.

i.e. x0 is a solution of V I(T,K, u). □
Remark 2.4. The set V I(T,K, u) is not necessarily single-valued. But when
T is u-strictly monotone the uniqueness property holds. In fact if x, x′ ∈ K
are two solutions of V I(T,K, u) then

(y − x, T (x)|u) ≥ 0 y ∈ K,

(y − x′, T (x′)|u) ≥ 0 y ∈ K.

So, setting y = x′ in first inequality and y = x in second, we have
(x− x′, T (x)− T (x′)|u) ≤ 0.

Now strictly monotonicity implies that x = x′.

For any subset S of X define u-orthogonal complement of S by
S⊥
u = {x ∈ X|(x, y|u) = 0,∀y ∈ S}.

Proposition 2.5. Let S ⊆ X be nonempty and closed under scaler multi-
plication, u ∈ X and T : S → X be a mapping. Then x0 is solution to
V I(T, S, u) if and only if T (x0) ∈ S⊥

u .

Proof. If x0 is a solution of V I(T, S, u) and x ∈ S then (x−x0, T (x0)|u) ≥ 0.
Now 0,−x ∈ s implies that (x, T (x0)|u) = 0. Conversely if T (x0) ∈ S⊥

u then
clearly (x− x0, T (x0)|u) = 0 and the proof is complete. □

The following theorem is fundamental existence theorem for V I(T,K, u).
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Theorem 2.6. Let K be a compact convex subset of X, u ∈ X and T : K −→
X be continuous, then V I(T,K, u) is nonempty.

Proof. It is well known that in inner product space (X, ⟨., .⟩) if K ⊆ X
is compact and convex and T : K −→ X is continuous, then V I(T,K)
has a solution. An easy computation shows that, if u, v ∈ X is linearly
independent then for every t ∈ (0, 1],

⟨x, y⟩t = (x, y|u) + (x, y|tv) (x, y ∈ X)

is an inner product on X. So there exists xt ∈ K such that
⟨x− xt, T (xt)⟩t ≥ 0, (x ∈ K).

In other word
(x− xt, T (xt)|u) + (x− xt, T (xt)|tv) ≥ 0 (x ∈ K).

Since K is compact, then {xt}t has a limit point x0 ∈ K. Now continuity
of T implies that

(x− x0, T (x0)|u) ≥ 0, (x ∈ K).

Hence x0 ∈ V I(T,K, u) and this completes the proof. □

In general, if we have a monotonicity assumption then by the well-known
KKM-Fan lemma, we can prove an existence result for closed, bounded and
convex set. For the main result of this paper, we need the following famous
lemma of K−Fan.

Lemma 2.7. [7] Let K be a nonempty, closed and convex subset of a Haus-
dorff topological space and S : K → 2K be a multivalued map. Suppose that
for any finite set {x1, · · ·xn} ⊆ K one has conv{x1, · · ·xn} ⊆

∪n
i=1 S(xi),

(i.e., S is a KKM-mapping) and S(x) is closed for each x ∈ K and com-
pact for some x ∈ K, where conv denotes the convex hull operator. Then∩

x∈K S(x) ̸= ∅.

Theorem 2.8. Let K be a closed, bounded and convex subset of X, u ∈ X
and T : K −→ X be u-pseudo monotone and continuous and there exists
x ∈ K such that the set {y ∈ K : (x − y, T (x)|u) ≥ 0} is weakly compact,
then V I(T,K, u) has a solution.

Proof. Let x1, · · · , xn ∈ E , M = Cx1+ · · ·+Cxn and KM = M
∩
K. Then

KM is a compact and convex subset of M and T is continuous on KM . Thus
by Theorem 2.6, V I(T,KM , u) has a solution, say vM . By Lemma 2.3

(x− vm, T (x)|u) ≥ 0 (x ∈ KM ).

Define
S(x) = {y ∈ K : (x− y, T (x)|u) ≥ 0}.

S(x) is nonempty ( it is enough to set M = Cx), convex, closed and elements
of

∩
x∈K S(x) will be the solutions of V I(T,K, u). It is enough to show that∩

x∈K S(x) is nonempty. To prove this fact, we use Lemma ??.
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Let {x1, · · · , xm} ⊆ K. We claim that S is KKM mapping. If it is not the
case, then there exists a finite set {y1, · · · , ym} ⊆ K and ti ≥ 0, i = 1, · · · , n
such that

(2.2) y =
n∑

i=1

tiyi /∈
n∪

i=1

S(xi),
n∑

i=1

ti = 1.

So
(yi − y, T (yi)|u) < 0, 0, i = 1, · · · , n.

Which implies
(tiyi − tiy, tiT (yi)|u) < 0, 0, i = 1, · · · , n.

Now we have by addition

0 > (

n∑
i=1

tiyi − y, T (

n∑
i=1

tiyi) = (y − y, T (y)|u) = 0.

This is a contradiction. So S is a KKM-mapping and this completes the
proof. □
Remark 2.9. In the above theorem, if X is reflexive (as a locally convex
space) then S(x) is weakly closed for every x ∈ K and the Banach-Alauglo
theorem implies that S(x) is weakly compact. So, if X is reflexive then
Theorem 2.6 is satisfied for bounded closed convex sets.

In the two next theorems, we consider unbounded closed convex sets.

Theorem 2.10. Let T and u be as the previous theorem and K be a closed
convex subset of X. A necessary and sufficient condition for the set VI(T,K,u)
to be nonempty is that:
for some positive real number R there exists a solution xR of the variational
inequality V I(T,KR, u) where (KR = K

∩
{v :∥ v, u ∥≤ R}), satisfies the

inequality ∥ xR, u ∥< R.

Proof. Let x0 be a solution of V I(T,K, u). Choose R > 0 such that
∥ x0, u ∥< R. Then x0 is a solution of V I(T,KR, u) as required. Conversely,
If xR ∈ KR is a solution of V I(T,KR, u) and ∥ xR, u ∥< R. then xR is
an inner point of KR in the semi normed space (X,Pu). Thus there exists
ϵ > 0 such that Nϵ(xR) ⊆ KR. If y ∈ K is arbitrary then ϵ(y−xR)

2∥y−xR,u∥ + xR ∈
Nϵ(xR) ⊆ KR. So (y − xR, T (xR)|u) ≥ 0. □
Definition 2.11. A mapping T : K −→ X is called u-coercive on K if there
exists an element x0 ∈ K such that

(x− x0, Tx− Tx0|u)
∥x− x0, u∥

−→ +∞, as∥x, u∥ −→ ∞, x ∈ K.

Theorem 2.12. Let K ⊆ X be a nonempty closed and convex set and T :
K −→ X be monotone, u-coercive and continuous. Then V I(T,K, u) is
nonempty.
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Proof. If we prove that there exists a solution xR for V I(T,KR, u) such that
∥xR, u∥ < R. By choosing r > |T (x0)| and R > ∥x0, u∥ such that ∥x, u∥ ≥ R
we can conclude that

(x− x0, Tx− Tx0|u) ≥ r∥x− x0, u∥.
Now if ∥x, u∥ = R then we have

(x− x0, Tx|u) ≥ r∥x− x0∥+ (x− x0, Tx0|u)
≥ r∥x− x0∥ − ∥Tx0, u∥∥x− x0, u∥
≥ (r − ∥Tx0, u∥)∥x− x0, u∥ > 0.

Let xR ∈ KR be a solution of V I(T,KR, u). Then
(xR − x0, TxR|u) = −(x0 − xR, TxR|u) ≤ 0.

So ∥xR, u∥ ̸= R. In other words ∥xR, u∥ < R. □
Proposition 2.13. Let x be a solution of V I(T,K|u) and suppose that x is
an interior point of K in semi normed space (X,Pu). Then T (x) = 0.

Proof. x0 ∈ K◦ implies that there exists an ϵ > 0 such that Nϵ(x0) ⊆ K.
So if x ∈ X is arbitrary then ϵx

2∥x,u∥ + x0 ∈ Nϵ(x0) ⊆ K. Which implies that
(x, T (x0)|u) ≥ 0. Since x is arbitrary, we have T (x0) = 0. □

3. metric projection, fixed point and variational inequalities
The fixed point theory plays important role in variational inequalities. In

this section, we consider the relationship between metric projection, fixed
point and variational inequalities.

We know that, in any Hilbert space H, if K is a closed convex subset of
H, then there exists a unique element PK(x) of K such that

∥ x− PK(x) ∥= inf
y∈K

∥ x− y ∥ .

PK(x) is the projection of x on K (or best approximation to x from K),
where the mapping PK : H −→ K is the metric projection onto K.

Recently, many works on best approximation have been done in 2-normed
and 2-inner product spaces(see for example, [1], [2], [6], [16] and the refer-
ences therein.)

Definition 3.1. [16] Let (X, ∥., .∥) be a 2-normed space, K a subset of X,
u ∈ X and ⟨u⟩ the subspace of X generated by u. x0 ∈ K is called a u-best
approximation of x ∈ K, if

∥x− x0, u∥ = inf
y∈K

∥x− y, u∥.

The set of all u-best approximations of x in K is denoted by P u
K . K is called

u-proximinal(resp. u-Chebyshev) if for every x ∈ X \ (K+ ⟨u⟩), there exists
at least (resp. exactly) one u-best approximation in K.
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It is well known that every nonempty u-closed and convex set in a u-
Hilbert space is u-chebyshev.(see for example [12]). Some properties of puK
(for example u-monotones , uniformly continuity and etc.) are collected in
proposition 3.1. of [1]. Also in [18] Theorem 2.7. it is shown that if (X, (., .|.)
is a 2-inner product space, x, u ∈ X, K ⊆ X is closed and convex, then
p = P u

K(x) if and only if p ∈ K and (x−p, p−y|u) ≥ 0 (y ∈ K). So P u
K(x) is

characterized by a variational inequality. In fact, if T : y 7→ y−x, (x ∈ K),
then p = P u

K(x) if and only if p is the solution of V I(T,K, u). Thus finding
P u
K(x) for any x ∈ E is a variational problem and P u

K has monotonicity and
continuity properties that we need. Hence, we can apply the main theorems
of this paper to find P u

K(x).
Here we give another proof of (Theorem 2.3. [12]).

Corollary 3.2. If (X, (., .|.)) is a 2-inner product space and K ⊆ X is a closed
and convex set then P u

K(x) has at most one element.

Proof. Since the map T : y 7→ y − x, (y ∈ K) is u-strictly monotone,
Remark 2.4 proofs the corollary. □

In the next two propositions, by using the best approximation, we prove
equivalent statements for the solvability of variational inequalities.

Proposition 3.3. Let K ⊆ X be closed convex, u ∈ X and T : K −→ X be
a mapping. Then x0 is a solution of V I(T,K, u) if and only if x0 is a fixed
point of the map P u

K(I − ρT ) : K −→ K.That is x0 = P u
K(x0 − ρT (x0)),

where ρ > 0 is constant.

Proof. Let x ∈ K and x0 be a solution of V I(T,K, u). Thus (x−x0, ρT (x0)|u) ≥
0 or equivalently (x− x0, x0 + ρT (x0)− x0|u) ≥ 0. Now variational charac-
terization of best approximation implies that x0 = P u

K(x0 − ρT (x0)).
Conversely, if x0 = P u

K(x0−ρT (x0)) then (x0−x, x0+ρT (x0)−x0|u) ≥ 0.
Hence (x0 − x, T (x0)|u) ≥ 0. That is x0 is a solution of V I(T,K, u). □
Definition 3.4. Let K be a closed and convex subset of X. The operator
TK : X → X defined by TK(z) = T (P u

K(z)) + z − P u
K(z) (z ∈ X) is called

the normal operator associated with T , K and u.[17]

Proposition 3.5. An element x0 ∈ X is a solution of the equation TK(x0) = 0
if and only if p = P u

K(x0) is a solution of the V I(T,K, u).

Proof. If TK(x0) = 0 then we have T (p) + x0 − p = 0. On the other hand,
(x0 − p, p− x|u) ≥ 0 (x ∈ K).

So we have (x− p, T (p)|u) ≥ 0.
Conversely, if x ∈ K,x0 = p − T (p) and (x − p, T (p)|u) ≥ 0, we have
T (p) = p − x0. So (x − p, p − x0|u) ≥ 0. Which implies that p = P u

K(x0).
Therefore we have TK(x0) = 0. and this completes the proof. □

The next theorem is an existence theorem based on Banach fixed point
theorem.
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Theorem 3.6. Let K be a nonempty closed convex u-chebyshev subset of X
and T : K → E an operator satisfying

(T (x)− T (y), x− y|u) ≥ m ∥ x− y, u ∥2 (x, y ∈ K),

∥ T (x)− T (y), u ∥≤ M ∥ x− y, u ∥ (x, y ∈ K),

where, m and M are positive constants. Then there exists a unique solution
for V I(T,K, u).

Proof. We show that if the number ρ is chosen properly U = P u
K(I − ρT )

For every x, y ∈ X is a contraction mapping then Proposition 3.3 will proves
the theorem.

∥ U(x)− U(y), u ∥2 ≤∥ (I − ρT )(x)− (I − ρT )(y), u ∥2

= (x− ρT (x)− y + ρT (y), x− ρT (x)− y + ρT (y)|u)
=∥ x− y, u ∥2 −2ρ(T (x)− T (y), x− y|u) + ρ2 ∥ T (x)− T (y), u ∥2

≤ (1− 2ρm+ ρ2M2) ∥ x− y, u ∥2 .
Thus

∥ U(x)− U(y) ∥2≤ |1− 2ρm+ ρ2M2| ∥ x− y, u ∥2 .
Now if we suppose that ρ is small enough, then U will be a contraction.
Since we can always choose ρ so, U can always be constructed so. Hence
there exists a unique solution to the V I(T,K, u). □

More ever, proof of the above theorem shows that, the solution of V I(T,K, u)
can be obtained as the limit of the sequence generated by the classical iter-
ative process

xn+1 = U(xn+1) = P u
K(xn − ρT (xn))

whenever 0 < ρ < 2m
M2 .
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